Elasticsearch:使用最新的 Elasticsearch Java client 8.0 来创建索引并搜索

2022年4月11日   |   by mebius

这篇文章,我来详细地描述如何使用最新的 Elasticsearch Java client 8.0 来创建索引并进行搜索。最新的 Elasticsearch Java client API 和之前的不同。在之前的一些教程中,我们使用 High Level API来进行操作。在官方文档中,已经显示为 deprecated。

前提条件

  • Java 8 及以后的版本
  • 一个 JSON 对象映射库,允许你的应用程序类与 Elasticsearch API 无缝集成。 Java 客户端支持 Jackson 或像Eclipse YassonJSON-B 库。

版本托管在 Maven Central 上。 如果你正在寻找 SNAPSHOT 版本,可以从 https://snapshots.elastic.co/maven/获得 Elastic Maven 快照存储库。

为什么需要一个新的 Java client?

也许有许多的开发者好奇为啥需要新的 client,以前的那个 High level rest client 不是好好的吗?以前的那个 High level REST client API 有如下的问题:

  • 和 Elasticsearch server 共享很多的代码
    • 拉取大量依赖 (30 + MB)。很多代码并不实用
    • 容易误解:之前的 API 暴露了许多 Elasticsearch server 的内部情况
  • 用手来书写 API
    • API 在不同的版本中有时并不一致
    • 需要大量的维护工作(400 多个 endpoints)
  • 没有 JSON/object 映射的集成
    • 你需要使用 byte buffers 来自己映射

新的 Java client API 具有一下的优点:

  • 使用代码来生成 API
    • 基于官方的Elasticsearch API 正式文档
    • Java client API 是新一代 Elasticsearch client 的第一个。后续有针对其它的语言发布
    • 99% 的代码是自动生成的
  • 一个提供更加现代 API 接口的机会
    • 流畅的 functional builders
    • 接近 Elasticsearch JSON 格式的分层 DSL
    • 到/从和应用程序类的自动映射
    • 保持 Java 8 的兼容性

安装

如果你还没有安装好自己的 Elasticsearch 及 Kibana 的话,请参阅我之前的文章:

如果你想在 Elastic Stack 8.0 上试用的话。你可以参阅文章 “Elastic Stack 8.0 安装 – 保护你的 Elastic Stack 现在比以往任何时候都简单”。在本文章中,我们不启用 HTTPS 的访问。你需要查看文章中 “如何配置 Elasticsearch 只带有基本安全” 这个部分。我们为 Elasticsearch 配置基本安全。

展示

在今天的展示中,我将使用 Maven 项目来进行展示尽管 gradle 也可以。为了方便大家的学习,我把我创建的项目上传到 github 上GitHub – liu-xiao-guo/ElasticsearchJava-search8

首先,我们的 pom.xml 文件如下:

pom.xml



    4.0.0

    org.example
    ElasticsearchJava-search8
    1.0-SNAPSHOT

    
        8
        8
        8.0.1
    

    
        
            co.elastic.clients
            elasticsearch-java
            ${elastic.version}
        

        
            com.fasterxml.jackson.core
            jackson-databind
            2.12.3
        

        
        
            jakarta.json
            jakarta.json-api
            2.0.1
        
    

如上所示,我们使用了 8.0.1 的版本。你也可以使用在地址Maven Central Repository Search上的最新版本 8.1.1。

接下来,我们创建一个叫做 Product.java 的文件:

Product.java

public class Product {
    private String id;
    private String name;
    private int price;

    public Product() {
    }

    public Product(String id, String name, int price) {
        this.id = id;
        this.name = name;
        this.price = price;
    }

    public String getId() {
        return id;
    }

    public String getName() {
        return name;
    }

    public int getPrice() {
        return price;
    }

    public void setId(String id) {
        this.id = id;
    }

    public void setName(String name) {
        this.name = name;
    }

    public void setPrice(int price) {
        this.price = price;
    }

    @Override
    public String toString() {
        return "Product{" +
                "id='" + id + ''' +
                ", name='" + name + ''' +
                ", price=" + price +
                '}';
    }
}

我们再接下来创建 ElasticsearchJava.java 文件:

import co.elastic.clients.elasticsearch.ElasticsearchAsyncClient;
import co.elastic.clients.elasticsearch.ElasticsearchClient;
import co.elastic.clients.elasticsearch._types.query_dsl.QueryBuilders;
import co.elastic.clients.elasticsearch._types.query_dsl.TermQuery;
import co.elastic.clients.elasticsearch.core.*;
import co.elastic.clients.elasticsearch.core.search.Hit;
import co.elastic.clients.json.jackson.JacksonJsonpMapper;
import co.elastic.clients.transport.ElasticsearchTransport;
import co.elastic.clients.transport.rest_client.RestClientTransport;
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;

import java.io.IOException;

public class ElasticsearchJava {

    private static ElasticsearchClient client = null;
    private static ElasticsearchAsyncClient asyncClient = null;

    private static synchronized void makeConnection() {
        // Create the low-level client
        final CredentialsProvider credentialsProvider =
                new BasicCredentialsProvider();
        credentialsProvider.setCredentials(AuthScope.ANY,
                new UsernamePasswordCredentials("elastic", "password"));

        RestClientBuilder builder = RestClient.builder(
                        new HttpHost("localhost", 9200))
                .setHttpClientConfigCallback(new RestClientBuilder.HttpClientConfigCallback() {
                    @Override
                    public HttpAsyncClientBuilder customizeHttpClient(
                            HttpAsyncClientBuilder httpClientBuilder) {
                        return httpClientBuilder
                                .setDefaultCredentialsProvider(credentialsProvider);
                    }
                });

        RestClient restClient = builder.build();

        // Create the transport with a Jackson mapper
        ElasticsearchTransport transport = new RestClientTransport(
                restClient, new JacksonJsonpMapper());

        // And create the API client
        client = new ElasticsearchClient(transport);
        asyncClient = new ElasticsearchAsyncClient(transport);
    }

    public static void main(String[] args) throws IOException {
        makeConnection();

        // Index data to an index products
        Product product = new Product("abc", "Bag", 42);

        IndexRequest indexRequest = new IndexRequest.Builder()
                .index("products")
                .id("abc")
                .document(product)
                .build();

        client.index(indexRequest);

        Product product1 = new Product("efg", "Bag", 42);

        client.index(builder -> builder
                .index("products")
                .id(product1.getId())
                .document(product1)
        );

        // Search for a data
        TermQuery query = QueryBuilders.term()
                .field("name")
                .value("bag")
                .build();

        SearchRequest request = new SearchRequest.Builder()
                .index("products")
                .query(query._toQuery())
                .build();

        SearchResponse search =
                client.search(
                        request,
                        Product.class
                );

        for (Hit hit: search.hits().hits()) {
            Product pd = hit.source();
            System.out.println(pd);
        }

        SearchResponse search1 = client.search(s -> s
                        .index("products")
                        .query(q -> q
                                .term(t -> t
                                        .field("name")
                                        .value(v -> v.stringValue("bag"))
                                )),
                Product.class);

        for (Hit hit: search1.hits().hits()) {
            Product pd = hit.source();
            System.out.println(pd);
        }

        // Splitting complex DSL
        TermQuery termQuery = TermQuery.of(t ->t.field("name").value("bag"));

        SearchResponse search2 = client.search(s -> s
                .index("products")
                .query(termQuery._toQuery()),
                Product.class
        );

        for (Hit hit: search2.hits().hits()) {
            Product pd = hit.source();
            System.out.println(pd);
        }

        // Creating aggregations
        SearchResponse search3 = client.search( b-> b
                .index("products")
                .size(0)
                .aggregations("price-histo", a -> a
                        .histogram(h -> h
                                .field("price")
                                .interval(20.0)
                        )
                ),
                Void.class
        );

        long firstBucketCount = search3.aggregations()
                .get("price-histo")
                .histogram()
                .buckets().array()
                .get(0)
                .docCount();

        System.out.println("doc count: " + firstBucketCount);
    }
}

在上面,代码也非常直接。我们使用如下的代码来连接到 Elasticsearch:

  private static synchronized void makeConnection() {
        // Create the low-level client
        final CredentialsProvider credentialsProvider =
                new BasicCredentialsProvider();
        credentialsProvider.setCredentials(AuthScope.ANY,
                new UsernamePasswordCredentials("elastic", "password"));

        RestClientBuilder builder = RestClient.builder(
                        new HttpHost("localhost", 9200))
                .setHttpClientConfigCallback(new RestClientBuilder.HttpClientConfigCallback() {
                    @Override
                    public HttpAsyncClientBuilder customizeHttpClient(
                            HttpAsyncClientBuilder httpClientBuilder) {
                        return httpClientBuilder
                                .setDefaultCredentialsProvider(credentialsProvider);
                    }
                });

        RestClient restClient = builder.build();

        // Create the transport with a Jackson mapper
        ElasticsearchTransport transport = new RestClientTransport(
                restClient, new JacksonJsonpMapper());

        // And create the API client
        client =tgcode new ElasticsearchClient(transport);
        asyncClient = new ElasticsearchAsyncClient(transport);
    }

在上面,我们使用 elastic 这个超级用户来进行访问。它的密码是 password。这个在实际的使用中,需要根据自己的情况来进行设置。

在下面,我们使用如下的两种格式来写入数据到 products 索引中:

        // Index data to an index products
        Product product = new Product("abc", "Bag", 42);

        IndexRequest indexRequest = new IndexRequest.Builder()
                .index("products")
                .id("abc")
                .document(product)
                .build();

        client.index(indexRequest);

        Product product1 = new Product("efg", "Bag", 42);

        client.index(builder -> builder
                .index("products")
                .id(product1.getId())
                .document(product1)
        );

上述的写入类似于在 Kibana 中输入如下的指令:

PUT products/_doc/abc
{
  "id": "abc",
  "name": "Bag",
  "price": 42
}

我们可以在 Kibana 中进行查看:

GET products/_search

上面的命令显示:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "products",
        "_id" : "abc",
        "_score" : 1.0,
        "_source" : {
          "id" : "abc",
          "name" : "Bag",
          "price" : 42
        }
      },
      {
        "_index" : "products",
        "_id" : "efg",
        "_score" : 1.0,
        "_source" : {
          "id" : "efg",
          "name" : "Bag",
          "price" : 42
        }
      }
    ]
  }
}

显然我们写入的数据是成功的。

接下来,我使用了如下的两种格式来进行搜索:

       // Search for a data
        TermQuery query = QueryBuilders.term()
                .field("name")
                .value("bag")
                .build();

        SearchRequest request = new SearchRequest.Builder()
                .index("products")
                .query(query._toQuery())
                .build();

        SearchResponse search =
                client.search(
                        request,
                        Product.class
                );

        for (Hit hit: search.hits().hits()) {
            Product pd = hit.source();
            System.out.println(pd);
        }

        SearchResponse search1 = client.searchtgcode(s -> s
                        .index("products")
                        .query(q -> q
                                .term(t -> t
                                        .field("name")
                                        .value(v -> v.stringValue("bag"))
                                )),
                Product.class);

        for (Hit hit: search1.hits().hits()) {
            Product pd = hit.source();
            System.out.println(pd);
        }

这个搜索相当于:

GET products/_search
{
  "query": {
    "term": {
      "name": {
        "value": "bag"
      }
    }
  }
}

上面的搜索结果为:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.18232156,
    "hits" : [
      {
        "_index" : "products",
        "_id" : "abc",
        "_score" : 0.18232156,
        "_source" : {
          "id" : "abc",
          "name" : "Bag",
          "price" : 42
        }
      },
      {
        "_index" : "products",
        "_id" : "efg",
        "_score" : 0.18232156,
        "_source" : {
          "id" : "efg",
          "name" : "Bag",
          "price" : 42
        }
      }
    ]
  }
}

Java 代码输出的结果为:

Product{id='abc', name='Bag', price=42}
Product{id='efg', name='Bag', price=42}
Product{id='abc', name='Bag', price=42}
Product{id='efg', name='Bag', price=42}

我们使用如下的代码来简化一个复杂的 DSL:

        // Splitting complex DSL
        TermQuery termQuery = TermQuery.of(t ->t.field("name").value("bag"));

        SearchResponse search2 = client.search(s -> s
                .index("products")
                .query(termQuery._toQuery()),
                Product.class
        );

        for (Hit hit: search2.hits().hits()) {
            Product pdtgcode = hit.source();
            System.out.println(pd);
        }

同样上面的输出结果为:

Product{id='abc', name='Bag', price=42}
Product{id='efg', name='Bag', price=42}

最后,使用了一个 aggregation:

        // Creating aggregations
        SearchResponse search3 = client.search( b-> b
                .index("products")
                .size(0)
                .aggregations("price-histo", a -> a
                        .histogram(h -> h
                                .field("price")
                                .interval(20.0)
                        )
                ),
                Void.class
        );

        long firstBucketCount = search3.aggregations()
                .get("price-histo")
                .histogram()
                .buckets().array()
                .get(0)
                .docCount();

        System.out.println("doc count: " + firstBucketCount);
    }

上面的 aggregation 相当于如下的请求:

GET products/_search
{
  "size": 0,
  "aggs": {
    "price-histo": {
      "histogram": {
        "field": "price",
        "interval": 50
      }
    }
  }
}

它的响应结果为:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "price-histo" : {
      "buckets" : [
        {
          "key" : 0.0,
          "doc_count" : 2
        }
      ]
    }
  }
}

我们的 Java 代码的输出结果为:

doc count: 2

文章来源于互联网:Elasticsearch:使用最新的 Elasticsearch Java client 8.0 来创建索引并搜索

相关推荐: Elasticsearch:Supervised Machine Learning – 有监督的机器学习

Elastic Stack 7.6 版本提供了端到端机器学习管道所需的最后一部分。 以前,机器学习专注于具有异常检测功能的无监督技术。 但是,在7.x发行版中已经发布了一些功能。 在 7.2 中,Elasticsearch 发布了用于将原始索引转换为特征索引的…