Observability:使用 OpenTelemetry 和 Elastic 监控 OpenAI API 和 GPT 模型
2024年2月22日 | by mebius
作者: 来自 ElasticDavid Hope
ChatGPT 现在非常火爆,甚至席卷了整个互联网。 作为 ChatGPT 的狂热用户和 ChatGPT 应用程序的开发人员,我对这项技术的可能性感到非常兴奋。 我看到的情况是,基于 ChatGPT 的解决方案将会呈指数级增长,人们将需要监控这些解决方案。
由于这是一项相当新技术,我们不想让专有技术给我们闪亮的新代码带来负担,不是吗? 不,我们不会,这就是为什么我们将在本博客中使用 OpenTelemetry 来监控我们的 ChatGPT 代码。 这对我来说尤其重要,因为我最近创建了一项通过 Zoom 通话生成会议记录的服务(需要使用 OpenAI 服务)。 如果我要任意使用这个功能,需要花费多少钱以及如何确保它可用?
OpenAI API 来救援
毫无疑问,OpenAI API 非常棒。 它还为我们提供了对每个 API 调用的每个响应中如下所示的信息,这可以帮助我们了解我们所收取的费用。 通过使用 OpenAI 在其网站上发布的 token 数量、模型和定价,我们可以计算成本。 问题是,我们如何将这些信息输入到我们的监控工具中?
{
"choices": [
{
"finish_reason": "length",
"index": 0,
"logprobs": null,
"text": "nnElastic is an amazing observability tool because it provides a comprehensive set of features for monitoring"
}
],
"created": 1680281710,
"id": "cmpl-70CJq07gibupTcSM8xOWekOTV5FRF",
"model": "text-davinci-003",
"object": "text_completion",
"usage": {
"completion_tokens": 20,
"prompt_tokens": 9,
"total_tokens": 29
}
}
OpenTelemetry 来救援
OpenTelemetry 确实是一项出色的工作。 多年来,它得到了如此多的采用和投入,似乎真的已经到了我们可以将其称为 “可观察性 Linux” 的地步。 我们可以使用它来记录日志、指标和跟踪,并以供应商中立的方式将它们放入我们最喜欢的可观察性工具中 – 在本例中为 Elastic Observability。
借助 Python 中最新最好的 otel 库,我们可以自动检测外部调用,这将帮助我们了解 OpenAI 调用的执行情况。 让我们先看一下我们的示例 Python 应用程序,它实现了 Flask 和 ChatGPT API,并且还具有 OpenTelemetry。 如果你想亲自尝试一下,请查看本博客末尾的 GitHub 链接并按照以下步骤操作。
设置 Elastic Cloud 帐户(如果你还没有)
- 请访问 https://www.elastic.co/cloud/elasticsearch-service/signup 注册为期两周的免费试用。
- 创建部署。
登录后,单击添加集成。
单击 APM integrations。
然后向下滚动以获取此博客所需的详细信息:
请务必设置以下环境变量,将变量替换为你从上面的 Elastic 和此处的 OpenAI 获得的数据,然后在命令行上运行这些 export 命令。
export OPEN_AI_KEY=sk-abcdefgh5ijk2l173mnop3qrstuvwxyzab2cde47fP2g9jij
export OTEL_EXPORTER_OTLP_AUTH_HEADER=abc9ldeofghij3klmn
export OTEL_EXPORTER_OTLP_ENDPOINT=https://123456abcdef.apm.us-west2.gcp.elastic-cloud.com:443
并安装以下 Python 库:
pip3 install opentelemetry-api
pip3 install opentelemetry-sdk
pip3 install opentelemetry-exporter-otlp
pip3 install opentelemetry-instrumentation
pip3 install opentelemetry-instrumentation-requests
pip3 install openai
pip3 install flask
下面是我们用于示例应用程序的代码。 在现实世界中,这将是你自己的代码。 所有这一切都是通过以下消息调用 OpenAI API:“Why is Elastic an amazing observability tool?”
import openai
from flask import Flask
import monitor # Import the module
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
import urllib
import os
from opentelemetry import trace
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.instrumentation.requests import RequestsInstrumentor
# OpenTelemetry setup up code here, feel free to replace the “your-service-name” attribute here.
resource = Resource(attributes={
SERVICE_NAME: "your-service-name"
})
provider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint=os.getenv('OTEL_EXPORTER_OTLP_ENDPOINT'),
headers="Authorization=Bearer%20"+os.getenv('OTEL_EXPORTER_OTLP_AUTH_HEADER')))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
tracer = trace.get_tracer(__name__)
RequestsInstrumentor().instrument()
# Initialize Flask app and instrument it
app = Flask(__name__)
# Set OpenAI API key
openai.api_key = os.getenv('OPEN_AI_KEY')
@app.route("/completion")
@tracer.start_as_current_span("do_work")
def completion():
response = openai.Completion.create(
model="text-davinci-003",
prompt="Why is Elastic an amazing observability tool?",
max_tokens=20,
temperature=0
)
return response.choices[0].text.strip()
if __name__ == "__main__":
app.run()
使用 Monkey patching (猴子补丁)
在 monitor.py 代码中,你会看到我们做了一些叫做 “Monkey Patching” 的事情。 猴子修补是 Python 中的一项技术,你可以通过修改类或模块的属性或方法在运行时动态修改类或模块的行为。 猴子补丁允许你更改类或模块的功能,而无需修改其源代码。 当你需要修改你无法控制或无法直接修改的现有类或模块的行为时,它会很有用。
我们在这里要做的是修改 “Completion” 调用的行为,以便我们可以 “窃取” 响应指标并将它们添加到我们的 OpenTelemetry 范围中。 你可以在下面看到我们如何做到这一点:
def count_completion_requests_and_tokens(func):
@wraps(func)
def wrapper(*args, **kwargs):
counters['completion_count'] += 1
response = func(*args, **kwargs)
token_count = response.usage.total_tokens
prompt_tokens = response.usage.prompt_tokens
completion_tokens = response.usage.completion_tokens
cost = calculate_cost(response)
strResponse = json.dumps(response)
# Set OpenTelemetry attributes
span = trace.get_current_span()
if span:
span.set_attribute("completion_count", counters['completion_count'])
span.set_attribute("token_count", token_count)
span.set_attribute("prompt_tokens", prompt_tokens)
span.set_attribute("completion_tokens", completion_tokens)
span.set_attribute("model", response.model)
span.set_attribute("cost", cost)
span.set_attribute("response", strResponse)
return response
return wrapper
# Monkey-patch the openai.Completion.create function
openai.Completion.create = count_completion_requests_and_tokens(openai.Completion.create)
通过将所有这些数据添加到我们的 Span,我们实际上可以将其发送到我们的 OpenTelemetry OTLP 端点(在本例中它将是 Elastic 的)。 这样做的好处是你可以轻松使用数据进行搜索或构建仪表板和可视化。 在最后一步中,我们还要计算成本。 我们通过实现以下函数来实现这一点,该函数将计算对 OpenAI API 的单个请求的成本。
def calculate_cost(response):
if response.model in ['gpt-4', 'gpt-4-0314']:
cost = (response.usage.prompt_tokens * 0.03 + response.usage.completion_tokens * 0.06) / 1000
elif response.model in ['gpt-4-32k', 'gpt-4-32k-0314']:
cost = (response.usage.prompt_tokens * 0.06 + response.usage.completion_tokens * 0.12) / 1000
elif 'gpt-3.5-turbo' in response.model:
cost = response.usage.total_tokens * 0.002 / 1000
elif 'davinci' in response.model:
cost = response.usage.total_tokens * 0.02 / 1000
elif 'curie' in response.model:
cost = response.usage.total_tokens * 0.002 / 1000
elif 'babbage' in response.model:
cost = response.usage.total_tokens * 0.0005 / 1000
elif 'ada' in response.model:
cost = response.usage.total_tokens * 0.0004 / 1000
else:
cost = 0
return cost
Elastic 来拯救
一旦我们捕获了所有这些数据,就可以在 Elastic 中享受一些乐趣了。 在 Discover 中,我们可以看到使用 OpenTelemetry 库发送的所有数据点:
有了这些标签,构建仪表板就变得非常容易。 看一下我之前构建的这个(也已并入到我的 GitHub 存储库):
我们还可以看到 OpenAI 服务的 transactions、延迟以及与 ChatGPT 服务调用相关的所有 span。
在 transaction 视图中,我们还可以看到特定 OpenAI 调用花费了多长时间:
此处对 OpenAI 的某些请求花费了超过 3 秒的时间。 ChatGPT 可能非常慢,因此我们必须了解其速度有多慢以及用户是否感到沮丧。
概括
我们研究了通过 OpenTelemetry 和 Elastic 监控 ChatGPT。 ChatGPT 是一种全球现象,毫无疑问它会不断发展壮大,很快每个人都会使用它。 由于获取响应的速度可能很慢,因此人们能够了解使用此服务的任何代码的性能至关重要。
还有成本问题,因为了解这项服务是否会侵蚀你的利润以及你所要求的服务是否能为你的业务带来利润非常重要。 在当前的经济环境下,我们必tgcode须关注盈利能力。
在这里查看该解决方案的代码。 请随意使用 “monitor” 库来检测你自己的 OpenAI 代码。
有兴趣了解有关 Elastic Observability 的更多信息吗? 查看以下资源:
并报名参加我们以 AWS 和 Forrester 为主题的 Elastic 可观测性趋势网络研讨会,不容错过!
在这篇博文中,我们可能使用了第三方生成式人工智能工具,这些工具由其各自所有者拥有和运营。 Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害负责。 使用人工智能工具处理个人、敏感或机密信息时请务必谨慎。 你提交的任何数据都可能用于人工智能培训或其他目的。 无法保证你提供的信息将得到安全或保密。 在使用之前,你应该熟悉任何生成式人工智能工具的隐私惯例和使用tgcode条款。
Elastic、Elasticsearch 和相关标志是 Elasticsearch N.V. 在美国和其他国家/地区的商标、徽标或注册商标。 所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。
原文:Monitor OpenAI API and GPT models with OpenTelemetry and Elastic — Elastic Search Labs
文章来源于互联网:Observability:使用 OpenTelemetry 和 Elastic 监控 OpenAI API 和 GPT 模型