Elasticsearch:介绍 retrievers – 搜索一切事物

2024年7月23日   |   by mebius

tgcode

作者:来自 ElasticJeff Vestal, Jack Conradson

%title插图%num

在 8.14 中,Elastic 在 Elasticsearch 中引入了一项名为 “retrievers – 检索器” 的新搜索功能。继续阅读以了解它们的简单性和效率,以及它们如何增强你的搜索操作。

检索器是 Elasticsearch 中搜索 API tgcode中添加的新抽象层。它们提供了在单个 _search API 调用中配置多阶段检索管道的便利。此架构通过消除对复杂搜索查询的多个 Elasticsearch API 调用的需求,简化了应用程序中的搜索逻辑。它还减少了对客户端逻辑的需求,而客户端逻辑通常需要组合来自多个查询的结果。

检索器的初始类型

初始版本中包含三种类型的检索器。每种检索器都针对特定目的而设计,组合起来后,它们可实现复杂的搜索操作。

可用的类型包括:

  • standard– 返回传统查询中的顶级文档。这些类型通过支持现有的查询 DSL 请求语法实现向后兼容,让你可以按照自己的节奏迁移到检索器框架。
  • kNN – 返回 kNN 搜索中的顶级文档。
  • RRF – 使用倒数融合算法将多个第一阶段检索器组合并排名为单个结果集,无需或只需极少的用户调整。RRF 检索器是一种复合检索器,其过滤元素会传播到其子检索器。

检索器有何不同?它们为何有用?

对于传统查询,查询是整体搜索 API 调用的一部分。检索器的不同之处在于,它们被设计为独立实体,可以单独使用或轻松组合使用。这种模块化方法在设计搜索策略时提供了更大的灵活性。

检索器被设计为 “retriever tree – 检索器树” 的一部分,这是一种层次结构,通过阐明搜索操作的顺序和逻辑来定义搜索操作。这种结构使复杂的搜索更易于管理,更易于开发人员理解,并允许在将来轻松添加新功能。

检索器支持可组合性,允许你构建管道并集成不同的检索策略。这允许轻松测试不同的检索组合。它们还提供对文档评分和筛选方式的更多控制。例如,你可以指定最低分数阈值,应用复杂的过滤器而不影响评分,并使用诸如 terminate_after 之类的参数进行性能优化。

与传统查询元素保持向后兼容性,自动将它们转换为适当的检索器。

检索器使用示例

让我们看一些使用检索器的示例。我们使用 IMDB 示例数据集。

你可以运行随附的 jupyter 笔记本,将 IMDB 数据导入无服务器搜索项目,并自行运行以下示例!

高层次设置是:

  • overview – 电影的简短摘要
  • names – 电影的名称
  • overview_dense – 从 e5-small 模型生成的 dense_vector
  • overview_sparse – 使用 Elastic 的 ELSER 模型的稀疏向量。
  • 仅使用 fields 并设置 _source:false 返回 names 和 overview 的文本版本

Standard – 搜索所有文本!

GET /imdb_movies/_search?pretty
{
  "retriever": {
    "standard": {
      "query": {
        "term": {
          "overview": "clueless"
        }
      }
    }
  },
  "size": 3,
  "fields": [
    "names",
    "overview"
  ],
  "_source": false
}

kNN – 搜索所有密集向量!

GET /imdb_movies/_search?pretty
{
  "retriever": {
    "knn": {
      "field": "overview_dense",
      "query_vector_builder": {
        "text_embedding": {
          "model_id": ".multilingual-e5-small_linux-x86_64",
          "model_text": "clueless slackers"
        }
      },
      "k": 5,
      "num_candidates": 5
    }
  },
  "size": 3,
  "fields": [
    "names",
    "overview"
  ],
  "_source": false
}

text_expansion – 搜索所有稀疏向量!

GET /imdb_movies/_search?pretty
{
  "retriever": {
    "standard": {
      "query": {
        "text_expansion": {
          "overview_sparse": {
            "model_id": ".elser_model_2_linux-x86_64",
            "model_text": "clueless slackers"
          }
        }
      }
    }
  },
  "size": 3,
  "fields": [
    "names",
    "overview"
  ],
  "_source": false
}

rrf -将所有事物结合起来!

GET /imdb_movies/_search?pretty
{
  "retriever": {
    "rrf": {
      "retrievers": [
        {
          "standard": {
            "query": {
              "term": {
                "overview": "clueless slackers"
              }
            }
          }
   tgcode     },
        {
          "knn": {
            "field": "overview_dense",
            "query_vector_builder": {
              "text_embedding": {
                "model_id": ".multilingual-e5-small_linux-x86_64",
                "model_text": "clueless slackers"
              }
            },
            "k": 5,
            "num_candidates": 5
          }
        },
        {
          "standard": {
            "query": {
              "text_expansion": {
                "overview_sparse": {
                  "model_id": ".elser_model_2_linux-x86_64",
                  "model_text": "clueless slackers"
                }
              }
            }
          }
        }
      ],
      "rank_window_size": 5,
      "rank_constant": 1
    }
  },
  "size": 3,
  "fields": [
    "names",
    "overview"
  ],
  "_source": false
}

检索器的当前限制

检索器带有某些限制,用户应注意。例如,使用复合检索器时只允许查询元素(element)。这强制更清晰地分离关注点,并防止过度嵌套或独立配置带来的复杂性。此外,子检索器不得使用限制将复合检索器作为检索器树一部分的元素。

即使使用复杂的检索策略,这些限制也能提高性能和可组合性。

检索器最初作为技术预览版发布,因此其 API 可能会发生变化

结论

检索器代表了 Elasticsearch 检索功能和用户友好性向前迈出的重要一步。它们可以以管道方式链接起来,每个检索器应用其逻辑并将结果传递给链中的下一个项目。通过允许更结构化、更灵活和更高效的搜索操作,检索器可以显著增强搜索体验。

以下资源提供了有关检索器的更多详细信息。

亲自尝试上述代码!你可以运行随附的 jupyter 笔记本,将 IMDB 数据导入 Elastic Serverless Search 项目!

准备好自己尝试一下了吗?开始免费试用
想要获得 Elastic 认证吗?了解下一次 Elasticsearch 工程师培训何时开始!

原文:Elasticsearch retrievers – How to use search retrievers in Elasticsearch — Elastic Search Labs

文章来源于互联网:Elasticsearch:介绍 retrievers – 搜索一切事物

相关推荐: 使用 Elasticsearch 和 OpenAI 为你的客户成功应用程序构建对话式搜索

作者:来自 ElasticLionel Palacin 在此博客中,我们将探讨如何通过利用大型语言模型 (LLM) 和检索增强生成 (RAG) 等技术实施对话式搜索来增强你的客户成功应用程序。 你将了解对话式搜索在客户成功应用程序环境中的优势,以及如何使用 E…

Tags: , , ,